

System Structure and Parameterization

Document version: 1.0.1
 March July 525, 202219

This document is the first public release of the System Structure and Parameterization Standard (SSP). This
constitutes a standard of the Modelica Association.

On the Downloads page (https://ssp-standard.org/downloads), this specification, as well as supporting XML
schema files are provided.

Contact the SSP development group at map-ssp_projectlead@googlegroups.com.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 2 of 74

History / Road Map

Version Date Remarks

1.0 2019-03-05 First Public Release of SSP

1.0.1 2022-07-25 Public Release of SSP 1.0.1

Please report issues that you find with this specification to map-ssp_projectlead@googlegroups.com.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 3 of 74

License of this document

Copyright © 2016 – 202219 Modelica Association Project “SSP”

This document is provided “as is" without any warranty. It is licensed under the CC-BY-SA (Creative Commons
Attribution-Sharealike 4.0 International) license, which is the license used by Wikipedia. The human-readable
summary of the license text from http://creativecommons.org/licenses/by-sa/4.0/ is as follows:

You are free to:

Share — copy and redistribute the material in any medium or format

Remix — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes
were made. You may do so in any reasonable manner, but not in any way that suggests the licensor
endorses you or your use.

Share Alike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

The legal license text and disclaimer is available at:

http://creativecommons.org/licenses/by-sa/4.0/legalcode

Note:

Article (3a) of this license requires that modifications of this work must clearly label, demarcate or
otherwise identify that changes were made.

The XML schema files that accompany this document are available under the BSD 2-Clause license
(http://www.opensource.org/licenses/bsd-license.html).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. Modelica Association shall not be held responsible for identifying such patent rights.

If you have improvement suggestions, please send them to the SSP development group at map-
ssp_projectlead@googlegroups.com.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 4 of 74

Abstract

This document defines the SSP standard as a tool-independent format for the description, packaging
and exchange of system structures and their parameterization. The standard is comprised of a set of
XML-based formats to describe a network of component models with their signal flow and
parametrization, as well as a ZIP-based packaging format for efficient distribution of entire systems,
including any referenced models and other resources.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 5 of 74

About SSP

Conventions used in this Document

 The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in RFC
2119 [RFC2119].

 Non-normative text is given in square brackets in italic font: [especially examples are defined in this
style.].

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 6 of 74

Contents

1. Overview .. 87

1.1 Properties and Guiding Ideas ... 87

1.2 Typical Use cases .. 87

1.2.1 Designing a simulation structure ... 98

1.2.2 SSP as definition of component interfaces and parameterization as template 98

1.2.3 SSP as central parameterization description and syntax for other parameterization
databases ... 98

1.2.4 SSP as particular instances of ready-to-simulate simulation systems 109

1.2.5 SSP for reuse of system structure elements during development 109

1.3 Feature Overview ... 109

1.4 Acknowledgements ... 109

2. SSP Common Concepts ... 1211

2.1 Extensibility .. 1211

2.1.1 Annotation Mechanism .. 1211

2.1.2 Extra Files Mechanism .. 1211

2.1.3 Extension Namespaces ... 1211

2.1.4 MIME-type based format dispatch ... 1211

2.2 Versioning and Layered Standards ... 1312

2.3 Content addressing .. 1312

3. System Structure Package (SSP) .. 1514

4. Common Content (SSC) ... 1716

4.1 Common Attributes ... 1716

4.2 Common XML Child Elements .. 1716

4.3 Top-Level Attributes ... 1817

4.4 Top-Level XML Child Elements .. 1817

4.4.1 Enumerations .. 1918

4.4.2 Units .. 2019

4.5 XML Element Choices .. 2221

4.5.1 Type Choice .. 2221

4.5.2 Transformation Choice .. 2423

5. System Structure Description (SSD) ... 2827

5.1 SystemStructureDescription ... 2827

5.1.1 Default Experiment .. 2928

5.2 Common Model Element Type .. 3029

5.2.1 Connectors .. 3029

5.2.2 ElementGeometry .. 3432

5.2.3 ParameterBindings .. 4340

5.3 System ... 4744

5.3.1 Elements ... 4845

5.3.2 Connections .. 4845

5.3.3 SignalDictionaries .. 5249

5.3.4 SystemGeometry ... 5450

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 7 of 74

5.3.5 GraphicalElements .. 5551

5.4 Component ... 5952

5.5 SignalDictionaryReference ... 6154

6. System Structure Parameter Values (SSV) ... 6255

6.1 ParameterSet ... 6255

6.2 Parameters ... 6356

6.2.1 Real ... 6457

6.2.2 Integer ... 6558

6.2.3 Boolean ... 6558

6.2.4 String ... 6558

6.2.5 Enumeration .. 6659

6.2.6 Binary .. 6659

7. System Structure Parameter Mapping (SSM) .. 6861

7.1 ParameterMapping ... 6861

7.1.1 MappingEntry .. 6962

8. System Structure Signal Dictionaries (SSB) ... 7164

8.1 SignalDictionary .. 7164

8.1.1 DictionaryEntry .. 7265

9. Literature ... 7467

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 8 of 74

1. Overview

SSP is a tool-independent format for the description, packaging and exchange of system structures and
their parameterization. The standard is comprised of a set of XML-based formats to describe a network
of component models with their signal flow and parametrization, as well as a ZIP-based packaging
format for efficient distribution of entire systems, including any referenced models and other resources.
This description is tool neutral and is intended to be used primarly as an exchange format of simulation
system descriptions between different tools.

SSP can be seen as an extension to the FMI (Functional Mockup Interface) standard [FMI20]. FMI
describes a tool independent standard to exchange single simulation models. Using SSP complete
systems consisting of multiple interconnected simulation models can be defined with the desired signal
flow and also with the wanted parameterization of each single model as well as the parameters for the
complete system. This system topology can include hierarchies of sub-systems for proper structuring of
the overall system. Along the signal flow, unit definitions can be used for automatic unit conversion or
unit checking. Parameters can be derived from other parameters to be able to introduce dependencies of
parameters between different components or to assure consistent use of same values for multiple
components where needed. While SSP is closely aligned to FMI it can also be used with components of
other formats than FMI.

1.1 Properties and Guiding Ideas

This section introduces the basic properties and guiding principles that underly the design of the SSP
standard:

Tool independence: The core intent of SSP is to enable the exchange of partial and complete simulation
systems between tools. In consequence any tool-specific data is not stored in the standard
schema and will be lost during transfer between implementations. However specific data can be
stored in customized annotations for reuse in the same tool. Additional common data for use
across tools can also be standardized as layered standards (cf. section 2.2).

Simplicity: SSP is focused on the possibility to exchange complete or partial topologies and parameters
between different tools as simply as possible, while retaining essential information. This
optionally also includes basic graphical information, to ensure basic recognizability, while
eschewing the complexities of full and exact graphical model exchange. This approach also
differentiates SSP from systems engineering standards like SysML: By focusing on simplicity and
simulation-related features, SSP avoids the complexities that have plagued the tool-independent
exchange of SysML models, enabling a wider adoption across the tool landscape.

Maximum Reuseability: SSP contributes to maximizing reusability of models and parameters across
tools and use cases. SSP can be used to specify required interfaces of a single component
without the need to build a running model. Such an interface specification can be used as a
template for the implementation of a model. In consequence compatibility between different
implementations can be guaranteed, ensuring that these implementations will fit into the overall
system structure. The feature of automated unit conversion further reduces the need for
adaptations between uses. Mechanisms like signal dictionaries support simplified signal
matching even across hierarchies, without the need to adjust all intervening interfaces.
Hierarchical structures enable encapsulation and combination of small components into
subsystems that can be reused in larger subsystems.

1.2 Typical Use cases

To understand the value of SSP, five basic use cases are listed below. These use cases are driven by the
idea of collaboration of different departments either in one organization or across organizations. Additionally,

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 9 of 74

a systems engineering approach is used, where a system design is performed at an early stage before the
implementation of each component is completed.

It is also very important to keep in mind that SSP is defined as a tool independent exchange format. All
elements of SSP can be used in different tools. Hence for every use case the most appropriate tool can
be used and the result can be stored with SSP and imported by another tool for the next use case.

Another strength of SSP is due to its simple syntax that users can easily write their own software to read,
generate or manipulate SSP files and exchange them with other tools that support SSP.

1.2.1 Designing a simulation structure

For the simulation of complex systems, first a design of this system should be created. From a
simulation perspective, each component has to be described with its inputs and outputs and its required
parameters. This can be done using SSP by defining the wrapper of this component with an empty
Component element comprising the connectors for the inputs and outputs and the component’s

parameters.

The interaction of the components is defined by the connections. Connections in SSP are always causal.
Connections can be made directly between components or via signal dictionaries. A signal dictionary is a
collection of signals similar to a bus concept (e.g. like a CAN bus). During the design phase of a system,
a signal dictionary can be a good way to predefine the available signal connections.

If the system has global parameters that shall be propagated to multipile components, the definition can
also be made at system level. The mapping to the parameters of the components can be realized either
using connections or through parameter bindings that can include parameter mappings.

1.2.2 SSP as definition of component interfaces and parameterization as template

The main result of the design of the complete simulation structure is the definition of all needed
components and the used parameterization structure. Each component can be used as a design
template for the implementation – including the wanted parameters. The system designer extracts each
component into a separate SSP file as preparation for the implementation and sends it to the
implementor.

The implementor of the component can import this SSP file as a template in his authoring tool and
directly code the behavior using the defined input signals and the definition of the parameters to
calculate the defined output signals.

After completion of the implementation the component can be returned as a running entity in an SSP
package file for insertion into the complete system structure by the integrator. The integrator can decide
whether to merge the components from different sources into one file or use the components as
references by using the appropriate mechanisms in SSP to just link to the original SSP files. The latter
approach has the benefit that the components can be used “untouched” and any “warranty” given by the
author of the component is not corrupted. Even traceability information can be retained this way.

1.2.3 SSP as central parameterization description and syntax for other parameterization
databases

A good system design can be used for various applications. The structure keeps the same for all these
applications. The parameter settings are used to differentiate the applications. Therefore a good
parametrization concept is important to facilitate this reuse. SSP supports the creation of a central
parameterization structure for entire systems. The SSP parameter data model can be used to integrate
parameters from various sources, including external parameter databases, which can export their
parameter data as SSV data sets. Through the URI-based addressing mechanism, tools can support
direct access to such databases from system structure descriptions.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 10 of 74

1.2.4 SSP as particular instances of ready-to-simulate simulation systems

After implementation of all components and provisioning of the parameter settings for a particular system
everything is in place for running simulations. All these entities can be stored in one single SSP package,
which can be imported by the executing system for running the simulation. Depending on the execution
system it might be necessary to define additional settings for the solver or other execution algorithms. The
core SSP standard does not include these execution-specific settings, but layered standards will be defined
to include those settings.
These complete instances of simulation systems can also be used as an archive for traceability purposes.

1.2.5 SSP for reuse of system structure elements during development

As an example, a system structure defined originally for software-in-the-loop testing can also be reused for
hardware-in-the-loop testing. Where FMI enables the reuse of individual models across platforms, SSP
enables the reuse of complete systems and subsystems, including their configurations, basic layouts, and
parameters.
Data management tools can control the lifecycle of the SSP-based system structures. There is an increasing
desire to reuse environment models to provide proven, consistent solutions for the validation of controller
models in different projects and development stages (e.g., for virtual validation and HIL simulations).
Data management environments provide capabilities for managing model compositions, handling variants of
systems and managing the parameter and signal interfaces of the different model systems.
The SSP approach enables the sharing of standardized system structure descriptions between data
management, integration and configuration tools for SIL, MIL and HIL scenarios.

1.3 Feature Overview

 Hierarchical (multi-level) description of systems of connected components

 Use of different kind of components: FMUs and external SSPs/SSDs, extensible to other models

 Binding of parameters both at component and system-level, including automatic unit-
transformations and name-mapping

 Signal dictionaries support cross-hierarchical signal pools (e.g for buses)

 Packaging of SSDs, FMUs, Parameters, … into one bundle (SSP)

 Light-weight support for variant handling at SSP level
(multiple SSDs sharing components, parameters, resources)

 Optional exchange of graphical information (similar display across tools)

 URI references to all resources: Integration with other systems via URIs and usage of
subsystems in a read-only manner

1.4 Acknowledgements

This standard was developed as part of the Modelica Association Project “System Structure and
Parametrization” (MAP SSP). The following companies and persons were involved in the creation of the
standard as direct contributors to the standard document:

 Christian Bertsch, Bosch

 Dag Brück, Dassault Systèmes

 Markus Deppe, dSpace

 Hans-Martin Heinkel, Bosch

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 11 of 74

 Maria Henningsson, Modelon

 Jan-Niklas Jäschke, TLK-Thermo

 Jochen Köhler, ZF Friedrichshafen

 Jürgen Krasser, AVL

 Peter Lobner, eXXcellent solutions

 Pierre R. Mai, PMSF IT Consulting

 Masoud Najafi, Altair

 Joel Petersson, Modelon

 Torsten Sommer, Dassault Systèmes

 Klaus Schuch, AVL

 Karl Wernersson, Dassault Systèmes

 Ulrich Wurstbauer, TWT

 Hang Yu, Pratt & Miller Engineering

We would also like to thank all persons that provided feedback during the internal and public feedback
periods, as well as prototype implementations and public presentations furthering the aims of this
standard.

1.5 Changes in 1.0.1

The following changes were performed as part of the 1.0.1 maintenance release:

 Correct version string for 1.0 release (Issue #54)

 Clarify that GTypeChoice is optional for connectors (Issue #80)

 Clarify use of binary connectors (Issue #98)

 Clarify interaction with structured variable naming convention in FMI (Issue #59)

 Clarify icon rotation specification (Issue #29)

 Add non-normative comment on empty/missing source attribute of components (Issue #82)

 Clarify connector geometry override (Issue #30)

 Add further examples of graphical notation (Issue #42)

 Minor typographical fixes (Issues #56, #57, #58)

Note that there were no changes to the XML Schema files of the standard.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 12 of 74

2. SSP Common Concepts

2.1 Extensibility

The SSP standard allows the set of data and meta-data stored and transported via SSP file formats to
be extended by tools and users through three extension mechanisms: Annotations, extra files and MIME
type-based format dispatch.

2.1.1 Annotation Mechanism

All XML-based file formats defined in the SSP standard allow optional ssc:Annotation elements to be

inserted in all XML elements that represent entities of the underlying data model. This is achieved
through the ssc:TAnnotations type defined in section 4.2. Each ssc:Annotation element contains a

required type attribute, which contains the namespace for that annotation, as defined in section 2.1.3.

The content of the ssc:Annotation element CAN be arbitrary XML data, and CAN make use of XML

namespaces and XML schemas for combined validation where appropriate.

2.1.2 Extra Files Mechanism

The System Structure Package (SSP) file format is a ZIP-based packaging format, and thus not XML-
based. It offers a separate mechanism to include additional data and meta-data into the package format
through the reserved extra/ ZIP entry prefix (i.e. top-level directory), as defined in section 3. Files are

placed inside sub-directories under that top-level directory using the namespace as defined in section
2.1.3 as part of the sub-directory name. The content of files and further sub-directories placed in those
sub-directories are unrestricted.

2.1.3 Extension Namespaces

Both annotations and extra files extensions make use of a namespace mechanism based on reverse
domain notation: The originator of a specification for additional data specifies a domain name under their
control as the namespace for the additional data, in order to avoid conflicts due to name collisions. The
namespace is used in reverse domain notation for the type attributes in the annotation mechanism and

as part of the file entry prefix under extra/ in the extra files mechanism. All namespaces under both the

org.modelica and org.ssp-standard domains are reserved for use in future layered standards (see
below).

[For example, extensions defined by the Modelica Association might make use of the
org.modelica.ssp namespace. This could lead to annotations with a type attribute of

org.modelica.ssp.something, and/or extra files under the extra/org.modelica.ssp.something

sub-directory.]

2.1.4 MIME-type based format dispatch

In all places where SSP file formats reference additional, potentially external, data, the reference not
only caries a source specification (indicating where the data can be located, if it is not inlined), but also a
MIME type attribute, specifying the file format of the data being referenced. The base standard specifies
a minimum set of MIME types and related file formats (including specifically the SSP-defined file formats
and FMI) that must be supported by implementations.

However implementations are free to support additional MIME types and file formats where sensible, and
the exact semantics of support for additional file formats can be specified through layered standards, as
described below.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 13 of 74

In this fashion extension of SSP to support pre-existing, new or domain-specific file formats after the
base standard has been finalized can be realized, as long as the file format can be semantically mapped
to the SSP concepts already in place.

2.2 Versioning and Layered Standards

The SSP standard uses semantic version numbers, as defined in [SV200], where the standard version
consists of a triple of version numbers, consisting of major version, minor version, and patch version
numbers [e.g. 1.2.3 for major version 1, minor version 2 and patch version 3].

 Major versions will introduce changes that are neither backward nor forward-compatible,
including changes to the XML schemas to include new non-ignorable content.

 Minor versions will only contain clarifications and include new layered standards, which may add
new ignorable XML content, as defined below, into the core standard document, indicating that
the standard needs to be supported by all conforming implementations.

 Patch versions will only change explanatory text of the standard, make formerly defined content
clearer, without any other changes to the XML schemas or other content definitions. For this
reason, the version number attribute of all SSP files will only contain major and minor version
numbers and not the patch version number: It should never be necessary for an importing tool to
know the patch version number of the standard that the generating tool implemented.

In order to enable the backward-compatible extension of the SSP standard in minor releases and
between minor releases, MAP SSP will make extensive use of the layered standard mechanism to
introduce new features in a fully backward-compatible and optional way.

A layered standard defines extensions to the base SSP standard by specifying either standardized
annotations, standardized extra files in SSP archives, and/or support for additional MIME types/file
formats, as defined in section 2.1. A layered standard can include a single or combined set of extension
mechanisms from this set. The layered standard is thus considered to be layered on top of the definitions
and extensions mechanisms provided by this base standard.

Layered standards can fall into three categories:

 Layered standards can be defined by third parties, making them third-party layered standards,
without any representations by MAP SSP for their suitability or content, or even knowledge by
MAP SSP about their existence.

 Layered standards can be defined/adopted and published by MAP SSP itself, making them MAP
SSP layered standards.

 Finally, layered standards that have achieved enough adoption or importance to be included into
the base standard set can be incorporated into a new minor release version of the base standard
as an optional or mandatory appendix, making support for this layered standard optional or
required for conformance with the newly published minor release version of the base standard.

2.3 Content addressing

All references between files using file formats defined in the SSP standard are expressed through URIs.
Usually those references make use of relative URIs, where the base URI that those relative URIs are
resolved against are specified in the SSP standard [e.g. for SSDs, relative URIs to other content are
usually resolved against the URI of the SSD, but can optionally also be resolved against the URI of
referenced components, e.g. in order to reference a file inside a referenced FMU.].

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 14 of 74

However the SSP syntax is not restricted to relative URIs, and allows both absolute URIs, and URIs of
any schema to be used to identify and/or locate referenced content. Besides basic support for file-
schema URIs, the set of schemas and transport mechanisms supported are up to the implementation.

This approach allows the uniform expression of dependencies, regardless of whether the SSP
distribution is file-based, web-based or using a PLM system or other repository.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 15 of 74

3. System Structure Package (SSP)

System Structure Package (file extension .ssp) files are specified to allow the packaging of System

Structure Description (*.ssd) files together with related resources, like referenced FMUs, parameter

files, etc.

System Structure Package files MUST be valid ZIP archives as specified in [ZIP635] with the following
restrictions:

 All file entries MUST use either compression method 0 (stored) or 8 (deflated).

 Encryption MUST NOT be used.

 Splitting of ZIP archives into multiple files MUST NOT be used.

 The maximum value for the version needed to extract field (section 4.4.3 of the ZIP
specification) MUST NOT be larger than version 2.0 for all entries in the archive.

For maximum portability, it is RECOMMENDED to keep all zip file entry names to the ASCII character
set, and keep the language encoding flag (EFS), i.e. bit 11 of the general purpose field as specified in
section 4.4.4 of the ZIP specification, set to zero. If use of a larger character set is needed, it is
RECOMMENDED to use the UTF-8 encoding option, as specified in appendix D of the ZIP specification,
by setting the language encoding flag (EFS) to 1 and encoding all filename and comment fields as UTF-
8.

Use of other character sets and encodings is NOT RECOMMENDED and is likely to yield portability
problems.

[It should be noted that some common implementations of ZIP archivers erroneously encode characters
beyond the Unicode Basic Multilingual Plane (BMP), i.e. code point U+10000 and above, using UTF-8
encoded surrogate pairs, yielding the CESU-8 encoding, instead of correctly encoding those codepoints
directly using UTF-8. It should also be noted that Unicode normalization issues that affect cross
filesystem/OS compatibility might need to be addressed, since those issues are not addressed in the ZIP
specification.]

The ZIP archive MUST contain an entry named SystemStructure.ssd at root level, containing a valid

System Structure Description, as specified in section 5.

Optionally the ZIP archive MAY contain multiple SSD file entries at root level, each with a different file
name [e.g. SystemStructure.ssd, VarA.ssd, VarB.ssd]. This allows the bundling of multiple

variants of a system structure definition referencing a similar set of packaged resources as one SSP.
There MUST still be one SSD file named SystemStructure.ssd at the root of the ZIP archive which is

deemed to be the default variant. Tools not supporting variant-containing SSPs MUST deal with the
given SSP by ignoring all contained SSD files except for the SystemStructure.ssd default file.

Tools SHOULD use the name attribute of the root SystemStructureDescription element of the SSD

files when presenting the system structure to the user, for example when selecting individual variant
SSDs from an SSP.

The ZIP archive MAY contain additional entries with the prefix resources/ which can be used to bundle

resources referenced from the System Structure Description file(s) through relative URIs as specified in
the sections below.

[Note: These additional entries may include additional files describing Parameter Values (*.ssv),

Parameter Mappings (*.ssm) or Signal Dictionaries (*.ssb). The names of these files, like all other

additional files, are arbitrary and are independent of variant handling or the names of the referencing
SSD files themselves. All stand-alone files are referenced by SSD files via (relative) URIs.]

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 16 of 74

The ZIP archive MAY contain additional entries with the prefix extra/ which can be used to store

additional data and meta-data. In order to ensure uniqueness the extra files SHOULD be provided in
sub-directories using a reverse domain name notation [cf. Java package names or Apple UTIs] of a
domain that is controlled by the entity defining the semantics and content of the additional entries. The
use of sub-directories beginning with org.modelica and org.ssp-standard is explicitly reserved for use by
MAP SSP-defined layered standards (cf. section 2.2), i.e. other uses MUST NOT use sub-directory
names beginning with these prefixes.

It is explicitly allowed for tools and users other than the original creator of an SSP to modify/add/delete
entries in the extra/ prefix without affecting the validity of SSP in all other aspects. Specifically all

validation or digital signature schemes used to protect SSP content SHOULD take the variability of extra
file content into account. [For example by by having seperate checksums/signatures for SSP core
content and extra content, or not having signatures at all for extra content.]

The ZIP archive MAY contain additional entries with the prefix documentation/ which can be used to

store documentation on the package contents. If documentation is provided an entry with the name
documentation/index.html MUST be provided which should be a useful entry point for the contained

documentation.

All other prefixes are currently reserved for future use.

[Note: The ZIP specification specifies clearly that the directory separator for ZIP entries is the forward
slash regardless of operating system. Simillarly the specification does not assign special meaning to
directory parts named . or .., hence an entry named ./foo.txt and an entry named foo.txt are

distinct entries and specify separate files. Implementations are well-advised to take common
vulnerabilities around ZIP handling, like e.g. the Zip Slip Vulnerability into account when processing SSP
archives from untrusted sources.]

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 17 of 74

4. Common Content (SSC)

Common Structures and Attributes that are used across all XML Schemas are defined in the
SystemStructureCommon.xsd Schema, which is imported by all other XML Schemas. All Types and
AttributeGroups live in the http://ssp-standard.org/SSP1/SystemStructureCommonhttp://ssp-

standard.org/SSP1/SystemStructureCommon namespace, nicknamed ssc.

4.1 Common Attributes

All XML elements that correspond to an entity of the system model will have the following set of common
XML attributes, as defined in the ssc:ABaseElement attribute group:

ATTRIBUTE DESCRIPTION

id This optional attribute gives the model entity a file-wide unique id which can be
referenced from other entities or via URI fragment identifier.

description This optional attribute gives a human readable longer description of the model
entity, which can be shown to the user where appropriate.

4.2 Common XML Child Elements

All XML elements that correspond to an entity of the system model will have the following set of common
child elements:

ELEMENT DESCRIPTION

Annotations This optional element can be used to give additional information for any model
entity. When it is present, it MUST contain 1 or more Annotation elements as

specified below.

Each annotation is encapsulated in an Annotation element, with a required type attribute specifying

the type of the annotation, and arbitrary XML content from arbitrary namespaces.

In order to ensure uniqueness the annotation type SHOULD be provided in reverse domain name
notation [cf. Java package names or Apple UTIs] of a domain that is controlled by the entity defining the
semantics and content of the annotation. For vendor-specific annotations this SHOULD be a domain

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 18 of 74

controlled by the tool vendor. For MAP-SSP-defined annotations, this MUST be a domain under the
org.modelica or org.ssp-standard prefixes. Annotations that are not defined by MAP SSP MUST

NOT use these two prefixes,

This mechanism can be used both for tool-specific annotations, as well as for layered standards (see
section 2.2) and other agreed-upon extensions, and thus provides a generic extension mechanism.

4.3 Top-Level Attributes

Top-level attributes are optional meta-data attributes common to all top-level container elements of all
defined file formats.

ATTRIBUTE DESCRIPTION

author Optional attribute giving the name and/or organization of the author of
the contents of this file.

fileversion Optional attribute giving the version of the contents of this file.

copyright Optional attribute giving information about copyrights of the contents of
this file.

license Optional attribute giving information about licensing of the contents of
this file.

generationTool Optional attribute giving information about the tool used to generate this
file.

generationDateAndTime Optional attribute giving the date and time this file was generated.

4.4 Top-Level XML Child Elements

Top-level elements of a defined file format may have the following set of common child elements.

By design, the enumeration and unit definitions for each file are included in that file directly (i.e.
enumeration and unit definitions are file scoped). This is intended to ensure the separate portability of
individual files, with each file containing a self-consistent set of information. When processing

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 19 of 74

information from multiple files, either from the same or separate system structures, it is up to the
importing implementation to deal with any inconsistencies between files found.

4.4.1 Enumerations

This optional element MUST contain definitions for all enumerations referenced in a file.

[As a file-based interchange standard, the natural scope for units and enumerations is the file scope, so
that files can be parsed and processed separately, without the need for cross-file references or scoped
references with the possibilities of shadowing and ambiguities. Upon import tools are free to merge unit
information across files or separate them between hierarchy layers as they see fit.]

Each enumeration is defined through an Enumeration XML element:

ATTRIBUTE DESCRIPTION

name This required attribute provides a name, which MUST be unique within
the set of enumerations in a given file.

The following XML child elements are specified for the Enumeration element:

ELEMENT DESCRIPTION

Item One or more elements specifying the items of the enumeration.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 20 of 74

4.4.1.1. Item

For each item in the enumeration there is one Item XML element with the following attributes:

ATTRIBUTE DESCRIPTION

name This required attribute provides a name for the enumeration item.

value This required attribute provides a value for the enumeration item.

4.4.2 Units

This optional element MUST contain definitions for all units referenced in a file.

[As a file-based interchange standard, the natural scope for units and enumerations is the file scope, so
that files can be parsed and processed separately, without the need for cross-file references or scoped
references with the possibilities of shadowing and ambiguities. Upon import tools are free to merge unit
information across files or separate them between hierarchy layers as they see fit.]

Each unit is defined through a Unit XML element:

ATTRIBUTE DESCRIPTION

name This required attribute provides a name, which MUST be unique within
the set of units in a given file.

The following XML child elements are specified for the Unit element:

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 21 of 74

ELEMENT DESCRIPTION

BaseUnit Required element defining the base unit of the given unit in SI units, see below.

4.4.2.1. BaseUnit
This element defines the base unit of the given unit in SI units. This is completely aligned with the
specification of base units in section 2.2.2 of the FMI 2.0 standard [FMI20].

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 22 of 74

ATTRIBUTE DESCRIPTION

kg Optional attribute specifying the exponent of SI base unit kg, defaults to
0.

m Optional attribute specifying the exponent of SI base unit m, defaults to 0.

s Optional attribute specifying the exponent of SI base unit s, defaults to 0.

A Optional attribute specifying the exponent of SI base unit A, defaults to 0.

K Optional attribute specifying the exponent of SI base unit K, defaults to 0.

mol Optional attribute specifying the exponent of SI base unit mol, defaults to
0.

cd Optional attribute specifying the exponent of SI base unit cd, defaults to
0.

rad Optional attribute specifying the exponent of SI base unit rad, defaults to
0.

factor Optional attribute specifying an optional factor, defaults to 1.

offset Optional attribute specifying an optional offset, defaults to 0.

4.5 XML Element Choices

These XML elements choices are common to multiple file formats. They are used inside elements to
select one of multiple child elements.

4.5.1 Type Choice

The following XML child elements denote the data type of a connector or dictionary entry. [Note that in
the case of connectors the use of a type element itself is optional, in the case of dictionary entries it is
required].

ELEMENT DESCRIPTION

Real / Integer /
Boolean / String /
Enumeration / Binary

Exactly one of these elements MUST be present to specify the type
of the Connectorelement. See below for details.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 23 of 74

4.5.1.1. Real

This type specifies that the connector in question represents an IEEE754 double precision floating point
number.

ATTRIBUTE DESCRIPTION

unit This optional attribute gives the name of a unit. The name MUST match
the name of a Unit entry in the Units XML element of the top-level

element of the file.
If the attribute is not supplied, the unit is determined through default
mechanisms: For FMU components, the unit of the underlying variable
would be used, or no unit, if no unit is specified. For systems, the units of
connected underlying connectors could be used if unambiguous. If a unit
(or its absence) cannot be deduced unambinguously, the user should be
informed of this error. Notwithstanding these mechanisms, unitless
variables of type Real are supported.

4.5.1.2. Integer

This type specifies that the connector in question represents a 32-bit signed integer number.

4.5.1.3. Boolean

This type specifies that the connector in question represents a Boolean value.

4.5.1.4. String

This type specifies that the connector in question represents a zero-terminated UTF-8 encoded string.

4.5.1.5. Enumeration

This type specifies that the connector in question represents an enumeration value, as specified by the
enumeration definition. The underlying type of the connector is the same as for Integer.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 24 of 74

ATTRIBUTE DESCRIPTION

name This required attribute gives the name of an enumeration which
references into the defined enumerations of a document. The name
MUST match the name of an Enumeration entry in the Enumerations

XML element of the top-level element of the file.

4.5.1.6. Binary

This type specifies that the connector in question represents a length-terminated binary data type, like
the Bbinary type defined for the FMI 2.13.0 standard, or substitute types like the binary type defined via
the OSI Sensor Model Packaging specification [OSMP100OSMP120].

ATTRIBUTE DESCRIPTION

mime-type This optional attribute specifies the MIME type of the underlying binary
data, which defaults to the non-specific application/octet-stream

type. This information CAN be used by the implementation to detect
mismatches between connected binary connectors, or provide automatic
means of conversion between different formats. It should be noted that
the implementation is NOT REQUIRED to provide this service, i.e. it
remains the responsibility of the operator to ensure only compatible
binary connectors are connected.

The attribute value MUST be a valid MIME type as specified in RFC
2045; it CAN include additional arguments, etc., as specified in RFC
2045.

4.5.2 Transformation Choice

The following XML child elements specify a transformation to be applied to a value prior to its use in a
connection or parameter mapping:

ELEMENT DESCRIPTION

LinearTransformation Specifies a linear transformation to be performed on the
connection values.

BooleanMappingTransformation Specifies a boolean mapping transformation to be
performed on the connection values.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 25 of 74

IntegerMappingTransformation Specifies an integer mapping transformation to be
performed on the connection values.

EnumerationMappingTransformation Specifies an enumeration mapping transformation to be
performed on the connection values.

4.5.2.1. LinearTransformation

This element provides for a linear transformation of the source value to the target value, i.e. in the
calculation target = factor * source + offset.

Note that conversions based on different units are performed, unless prevented by
suppressUnitConversion, prior to the application of the linear transformation, i.e. the value of source is
already converted to the target unit in the formula above. Linear transformations are only valid for
connectors of Real type.

ATTRIBUTE DESCRIPTION

factor This attribute specifies an optional factor value to use in a linear
transformation. The default is 1.

offset This attribute specifies an optional offset value to use in a transformation.
The default is 0.

4.5.2.2. BooleanMappingTransformation

This element provides for a transformation of Boolean values based on a mapping table and is valid for
connectors of Boolean type. Each mapping table entry is provided by a MapEntry element. Mapping

entries MUST be unambiguous, i.e. for a given source value at a maximum one entry specifying that
source value MUST be present. The mapping does not have to be complete, i.e. partial mappings CAN
be specified. In that case values not mapped by a mapping entry are kept unchanged.

ATTRIBUTE DESCRIPTION

source This attribute gives the source value that this entry applies to.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 26 of 74

target This attribute gives the value to use instead of the source value when
applying it to the system or component.

4.5.2.3. IntegerMappingTransformation

This element provides for a transformation of integer values based on a mapping table and is valid for
connectors of Integer or Enumeration type. Each mapping table entry is provided by a MapEntry

element. Mapping entries MUST be unambiguous, i.e. for a given source value at a maximum one entry
specifying that source value MUST be present. The mapping does not have to be complete, i.e. partial
mappings CAN be specified. In that case values not mapped by a mapping entry are kept unchanged.

When mapping to an Enumeration type, the target value MUST be a valid enumeration value for that

type. When mapping from an Enumeration type, the source value MUST be a valid enumeration value

for that type. This transformation can be applied between connectors of different Enumeration types, as

long as all resulting target values are valid in the target Enumeration type.

ATTRIBUTE DESCRIPTION

source This attribute gives the source value that this entry applies to.

target This attribute gives the value to use instead of the source value when
applying it to the system or component.

4.5.2.4. EnumerationMappingTransformation

This element provides for a transformation of enumeration values based on a mapping table of their
enumeration item names and is valid for connectors of Enumeration type. Each mapping table entry is

provided by a MapEntry element. Mapping entries MUST be unambiguous, i.e. for a given source value

at a maximum one entry specifying that source value MUST be present. The mapping does not have to
be complete, i.e. partial mappings CAN be specified. In that case values not mapped by a mapping entry
are kept unchanged.

When mapping to an Enumeration type, the target value MUST be a valid enumeration value for that

type. When mapping from an Enumeration type, the source value MUST be a valid enumeration value

for that type. This transformation can be applied between connectors of different Enumeration types, as

long as all resulting target values are valid in the target Enumeration type.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 27 of 74

ATTRIBUTE DESCRIPTION

source This attribute gives the source value that this entry applies to.

target This attribute gives the value to use instead of the source value when
applying it to the system or component.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 28 of 74

5. System Structure Description (SSD)

A System Structure Description describes a nested hierarchy of interconnected (sub-)systems and
atomic components.

A System Structure Description file (SSD, file extension .ssd) MUST be a well-formed XML 1.0 [XML10]

file that conforms to the SystemStructureDescription XML Schema distributed as part of this standard.
The file MUST use the UTF-8 encoding. All SSD-specific elements live in the http://ssp-

standard.org/SSP1/SystemStructureDescriptionhttp://ssp-

standard.org/SSP1/SystemStructureDescription namespace, nicknamed ssd.

5.1 SystemStructureDescription

The root element of an SSD file MUST be a SystemStructureDescription element, which gives

overall information about the system hierarchy described in this SSD file, including common meta-data,
and acts as a bracket for the root system and its unit and enumeration definitions.

ATTRIBUTE DESCRIPTION

version This required attribute specifies the version of this specification that the
system description conforms to. Only major and minor version number
are included, the patch version number MUST NOT be included in this
attribute. For the current release candidate this MUST be 1.0-RC1.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 29 of 74

name This required attribute provides a name, which can be used for purposes
of presenting the system structure to the user, for example when
selecting individual variant SSDs from an SSP.

The following XML child elements are specified for the SystemStructureDescription element:

ELEMENT DESCRIPTION

System This required element specifies the root system of the model, see section 5.3.

Enumerations This optional element MUST contain definitions for all enumerations
referenced in the system description file. See section 4.4.1 for its definition.

Units This optional element MUST contain definitions for all units referenced in the
system description file. See section 4.4.2 for its definition.

DefaultExperiment This optional element MAY contain information of a default simulation setup
that is supplied with the system definition for informational purposes, see
description below.

The root system of the model is specified through the required System element, see section 5.3.

Any enumerations and units referenced in the system description file MUST be provided through the
optional Enumerations and Units elements, as described in sections 4.4.1 and 4.4.2 respectively.

5.1.1 Default Experiment

This element contains information of a default simulation setup that is supplied with the system definition
for informational purposes.

[Note that in contrast to FMI 2.0 only start and stop time are specified here, since values like step size
or tolerance depend on the specific solver or master algorithms employed and are hence not specified in
this global element. Additional solver or master algorithm specific information can be supplied through
the annotation mechanism, or using a future layered standard.]

[The handling of systems comprising components with differing units for the independent variable
depends on the implementation. It should be noted that since FMI 2.0 the unit of the independent
variable for FMUs is clearly specified: It defaults to seconds, however other units can be specified by
explicitly defining the independent variable. This standard does not specify additional measures to deal
with differing independent variable units, but leaves this to the implementation.]

ATTRIBUTE DESCRIPTION

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 30 of 74

startTime This optional attribute gives the start time of the simulation.

stopTime This optional attribute gives the stop time of the simulation.

5.2 Common Model Element Type

System, Component and SignalDictionaryReference XML elements are subtypes of a common TElement
base type, that contains attributes and XML elements common to all kinds of model elements:

The following XML attributes are specified for the TElement type:

ATTRIBUTE DESCRIPTION

name This required attribute gives the model element a name, which is used to
identify the model element inside its parent system. The name MUST be
unique within the directly enclosing parent system. The name MUST NOT
be the empty string.

The following XML child elements are specified for the TElement type:

ELEMENT DESCRIPTION

Connectors This optional element specifies the set of connectors of this model element,
which represent the interface of the model element to the outside world. See
below for details.

ElementGeometry This optional element defines the geometry information of the component. See
below for details.

ParameterBindings This optional element specifies the set of parameter bindings of this model
element. See below for details.

5.2.1 Connectors

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 31 of 74

This optional element specifies the set of connectors of this model element, which represent the
interface of the model element to the outside world. For components the set of connectors MUST match
variables/ports of the underlying component implementation, e.g., for example the referenced FMI 2.0
FMUs, by the name of a connector has to match the name attribute of the corresponding

<ScalarVariable> element; for referenced FMUs that follow the OSI Sensor Model Packaging

specification [OSMP120], the name of a connector of type Binary has to match the name attribute of the

corresponding <osmp:osmp-binary-variable>.

Names of <ScalarVariable> elements of an FMU might follow the “Variable Naming Conventions”

specification as defined by the FMI standard. Hence, several ScalarVariables might be grouped as a
structure or an array. However, the name of a connector MUST match the name of a single
<ScalarVariable>.

Note that there is no requirement that connectors have to be present for all variables/ports of an
underlying component implementation. At least those connectors MUST be present which are referenced
in connections inside the SSD. [Note that connectors do not have to be referenced in connections.
Unreferenced connectors will yield the behavior that is specified for the underlying component
variables/ports, e.g. an unconnected FMU input variable will remain at its default value during the whole
simulation. The same is true for variables/ports that are not referenced through a connector at all.]

The following XML attributes are specified for the Connector element:

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 32 of 74

ATTRIBUTE DESCRIPTION

name This attribute gives the connector a name, which SHALL be unique within
the given model element, and, for components, MUST match the name of
a relevant variable/port in the underlying component implementation. In
the case of referenced FMUs this MUST match the name of the relevant
variable in the referenced FMU.

Note that there is no requirement that connectors have to be present for
all variables/ports of an underlying component implementation. At least
those connectors MUST be present which are referenced in connections
inside the SSD.

kind This attribute specifies the kind of the given connector, which indicates
whether the connector is an input, an output, both (inout), a parameter or
a calculated parameter (i.e. a parameter that is calculated by the
component during initialization).

For components this MUST match the related kind of the underlying
component implementation. For referenced FMUs it MUST match the
combination of variability and causality:

For FMI 2.0 this means that the causality of the variable MUST match the
kind of the connector (with the kind inout not being valid for either FMI

2.0 or 1.0).

For FMI 1.0 this means that for connectors of kind input or output the

causality of the variable MUST be input or output and the variability of

the variable MUST be discrete or continuous (for outputs also

constant and parameter are allowable). For connectors of kind

parameter the causality of the FMI 1.0 variable MUST be input or

internal and the variability MUST be parameter. For connectors of

kind calculatedParameter the causality of the FMI 1.0 variable MUST

be output and the variability MUST be parameter.

For SignalDictionaryReferences, the kind of a given connector can
additionally be inout, which indicates that the semantics of the connector

are derived from the connections going to the connector. This can be
used for example to allow a connector to function as both an input and
output within the same SignaleDictionaryReference.

The following XML child elements are specified for the Connector element:

ELEMENT DESCRIPTION

Real / Integer /
Boolean / String
/ Enumeration /
Binary

Exactly one of these elements MUST CAN be present to specify the type of
the Connector. See 4.5.1 Type Choice for details.

ConnectorGeometry This optional element defines the geometry information of the connector. See
below for details.

The type of the Connector is identified by the presence of one of the XML child elements Real,

Integer, Boolean, String, Enumeration, or Binary.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 33 of 74

5.2.1.1. ConnectorGeometry

This optional XML element gives the geometry information of the connector. Note that x and y

coordinates are in a special coordinate system, where 0,0 is the lower-left corner of the containing model
element, and 1,1 is the upper-right corner of the model element, regardless of aspect ratio.

For systems the placement of connectors for the inside and outside view of the system is identical, the
special coordinate system is just translated to different actual coordinate systems, namely the one
determined by the ElementGeometry for the outside view, and the one determined by SystemGeometry

for the inside view.

If defined, this ConnectorGeometry overrides any ConnectorGeometry of a System in a referenced

SSD file or any port location defined by an .fmu file (as defined in the relevant FMI standards).

ATTRIBUTE DESCRIPTION

x Required attribute giving the x coordinate of the connector inside the
special coordinate system.

y Required attribute giving the y coordinate of the connector inside the
special coordinate system.

[Graphical example for a ConnectorGeometry:

]

ConnectorGeometry

Element

(0.0,1.0)

(1.0,0.0) (0.0,0.0)

(x1,y2)

y

x

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 34 of 74

5.2.2 ElementGeometry

This optional XML element defines the geometry information of the model element, where (x1,y1) and

(x2,y2) define the positions of the lower-left and upper-right corners of the model element in the

coordinate system of its parent system. If x1>x2 this indicates horizontal flipping, y1>y2 indicates

vertical flipping.

The optional attribute rotation (in degrees) defines an additional rotation (applied after flipping), where

positive numbers indicate a counter clockwise rotation.

[Sometimes such a counter clockwise orientation is also called a left rotation (x→y).), with the coordinate
system orientation: x → right, y → up)]indicate left rotation (x→y). The coordinate system is oriented: x
→ right, y → up.

The optional attribute iconSource defines an icon URI with the same semantics as for the source

attribute of the Component element. If defined, this icon overrides any icon that may be defined in an

.fmu file (as defined in the relevant FMI standards). It is RECOMMENDED that implementations that

support graphical presentation support at least PNG and SVG file formats for the icon.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 35 of 74

The optional attribute iconRotation defines the rotation (in degrees) of the icon. The optional attribute

iconFixedAspectRatio defines whether the icon shall be fit into the extent defined by (x1,y1), (x2,y2)

and iconRotation with fixed aspect ratio. The optional attribute iconFlip defines whether any flipping

indicated by (x1,y1), (x2,y2) shall be applied to the icon graphics, too.

[If no explicit icon is given, the icon used by the tool to represent the system should be rotated
accordingly.]

ATTRIBUTE DESCRIPTION

x1 Required attribute giving the x coordinate of the lower left corner of the
model element inside the coordinate system of its parent system.

y1 Required attribute giving the y coordinate of the lower left corner of the
model element inside the coordinate system of its parent system.

x2 Required attribute giving the x coordinate of the upper right corner of the
model element inside the coordinate system of its parent system.

y2 Required attribute giving the y coordinate of the upper right corner of the
model element inside the coordinate system of its parent system.

rotation Optional attribute defines an additional rotation in degrees that is to be
applied after any flipping, where positive numbers indicate left rotation
(x→y).

iconSource Optional attribute defines an icon URI with the same semantics as for the
source attribute of the Component element. If defined, this icon

overrides any icon that may be defined in an .fmu file (as specified in the

relevant FMI standards). It is RECOMMENDED that implementations that
support graphical presentation support at least PNG and SVG file
formats for the icon.

iconRotation Optional attribute defines the rotation (in degrees) of the icon, where
positive numbers indicate left rotation (x→y).

iconFlip Optional attribute defines whether any flipping indicated by (x1,y1),

(x2,y2) shall be applied to the icon graphics, too, or not.

iconFixedAspectRatio Optional attribute defines whether the icon shall be fit into the extent
defined by (x1,y1), (x2,y2) with a fixed aspect ratio, or without keeping

the aspect ratio fixed.

[Graphical example for an ElementGeometry:

SystemGeometry

Element
(x2,y2)

ElementGeometry (x1,y1)

(0.0, 0.0) x

y

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 36 of 74

]

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 37 of 74

[The next examples show the effects of attributes of the ElementGeometry on the visual representation
of a reference element:

Non-transformed reference (icon fills rectangle, left 2 inputs, right 1 output)

Coordinate systems:

Red: ConnectorGeometry
Blue: ElementGeometry

Example 1: No flip (x1<x2, y1<y2), rotation=0

iconRotation=0, iconFixedAspectRatio=true, iconFlip=IGNORED (relevant only if element is

flipped)

Example 2: No flip (x1<x2, y1<y2), rotation=0

iconRotation=0, iconFixedAspectRatio=false, iconFlip=IGNORED

x

y

(0,0) (1,0)

(0,1)

(x1,y1)

(x2,y2)

(0,0) (1,0)

(0,1)

(0,0) (1,0)

(0,1)

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 38 of 74

Example 3: No flip (x1<x2, y1<y2), rotation=

iconRotation=, iconFixedAspectRatio=true, iconFlip=IGNORED

Example 4: No flip (x1<x2, y1<y2), rotation=

iconRotation=, iconFixedAspectRatio=false, iconFlip=IGNORED

x

y

(x1,y1)

(x2,y2)



 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 39 of 74

Example 5: No flip (x1<x2, y1<y2), rotation=

iconRotation=0, iconFixedAspectRatio=true, iconFlip=IGNORED

Example 6: No flip (x1<x2, y1<y2), rotation=

iconRotation=0, iconFixedAspectRatio=false, iconFlip=IGNORED

x

y

(x1,y1)

(x2,y2)



 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 40 of 74

Example 7: Horizontal flip (x1>x2), rotation=

iconRotation=, iconFixedAspectRatio=true, iconFlip=true

Example 8: Horizontal flip (x1>x2), rotation=

iconRotation=, iconFixedAspectRatio=false, iconFlip=false

Example 9: Horizontal flip (x1>x2), rotation=

iconRotation=, iconFixedAspectRatio=true, iconFlip=false

(x1,y1)

(x2,y2)



x

y

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 41 of 74

Example 10: Vertical flip (y1>y2), rotation=0

iconRotation=0, iconFixedAspectRatio=true, iconFlip=false

Example 11: Horizontal and vertical flip (x1>x2, y1>y2), rotation=0

iconRotation=0, iconFixedAspectRatio=true, iconFlip=false

Example 12: Horizontal and vertical flip (x1>x2, y1>y2), rotation=0

iconRotation=0, iconFixedAspectRatio=true, iconFlip=true

x

y

(0,0) (1,0)

(0,1)

(x1,y1)

(x2,y2)

y

(0,0) (1,0)

(0,1)

(x1,y1)

(x2,y2)

x

(0,0) (1,0)

(0,1)

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 42 of 74

Example 13: Horizontal and vertical flip (x1>x2, y1>y2), rotation=

iconRotation=, iconFixedAspectRatio=true, iconFlip=true

Example 14: Horizontal and vertical flip (x1>x2, y1>y2), rotation=

iconRotation=, iconFixedAspectRatio=false, iconFlip=true

Example 15: Horizontal and vertical flip (x1>x2, y1>y2), rotation=

iconRotation=, iconFixedAspectRatio=true, iconFlip=false

]

(x1,y1)

(x2,y2)



x

y

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 43 of 74

5.2.3 ParameterBindings

The ParameterBindings element provides the parameter bindings for a component or system, where

each binding is specified in a ParameterBinding element. A parameter binding applies a set of

parameter values (a parameter set), supplied by a parameter source (for example a parameter file) to
parametrize a component or system.

For FMU components this allows the parametrization of the FMU's parameters and start values of other
variables. For systems this allows the parametrization of complete (sub-)hierarchies of sub-systems and
components using a hierarchical naming scheme.

When no parameter mapping is specified as part of the binding, then all the parameter values provided
by the parameter source are applied using their original names. If a parameter matching this name is
found in the system, the parameter value is applied. Otherwise that parameter value is ignored.

When a parameter mapping is specified as part of the binding, then only the mapped parameter values
are applied, using their mapped-to names. Non-mapped parameter values are not applied in this case.

For FMU components parameter values are applied to FMU variables based on the variables’ names in
the FMU, i.e. it is NOT REQUIRED (but allowed) that those variables are referenced in connectors in the
system description.

For systems parameter values are applied using the hierarchical names of parameters or other variables
in the system.

The hierarchical names of the parameters or other variables of a system are formed in the following way:

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 44 of 74

 Any variables of the system exposed through connectors of the system have the name of the
connector as their name.

 For all elements of the system, the hierarchical names of the variables of those elements are
formed by prepending the element name and a dot to the hierarchical names of the variables in
that element.

[For example for a system A containing a system B which contains an exposed parameter named SP1
and an element C with a parameter P2, the hierarchical names of the parameters in system A are B.SP1
and B.C.P2 respectively. The hierarchical name of those parameters inside system B are SP1 and C.P2
respectively.]

Note that the hierarchical names of parameters or other variables do not have to be unique: If two or
more variables end up with the same hierarchical name (due to so-called punning), then any parameter
values being applied to that name MUST be applied to all of them. If this is not wanted, then it is up to
the generating implementation to ensure that no punning occurs, through proper choice of system and
element names.

[For example, for a system A containing a system B with component C and variable D, and system A
also containing a component called B.C and variable D, both variables will have the hierarchical name
A.B.C.D. If this is not wanted, then proper care should be taken in naming component B.C and system
B/component C in non-conflicting ways. The standard allows such punning, because the ability to have a
. in the name of systems or components allows for example the replacement of a monolithic component
with a system of components, or vice-versa, while keeping parameter names identical.]

More than one ParameterBinding can be supplied., In this case all of the parameters found will be

used to parametrize the component, with parameter values in ParameterBinding sources appearing at

a succeeding position in the element order taking priority over prior sources at the same hierarchy level,
should a parameter be included in more than one ParameterBinding source.

When ParameterBinding sources on multiple levels of the hierarchy supply values for the same

parameter, bindings at a higher hierarchy level take precedence over lower levels, i.e. bindings at a
system level take precedence over bindings at a sub-system or component level.

Parameter bindings for FMU components can be used to set any initial values in the FMU which are
legal to change. It is assumed that the parameterization is applied prior to initializing for FMI 1.0, or
before entering initialization mode for FMI 2.0.

This means that variables eligible for parameterization are those with:

 either causality = "input" or a start value for FMI 1.0

 variability != "constant" and initial = "exact" or "approx" for FMI 2.0

All kinds of system connectors can be parameterized. In case the system level connectors are connected
to FMU components, the parameterization MUST be compatible with the variable in the connected FMU.

Parameter bindings that apply to a component that references another SSD/SSP are handled as if the
top-level system of the SSD/SSP was present in the enclosing system instead of the component with
one special case: Any parameter bindings in the component are treated as if they were present in the
top-level system of the SSP/SSD after all parameter bindings of the system. Therefore they take priority
over any of the existing parameter bindings (for parameters with identical names).

ATTRIBUTE DESCRIPTION

type Optional attribute giving the MIME type of the parameter source, which
defaults to application/x-ssp-parameter-set to indicate the SSP

parameter set file format. No further types are currently defined, but can

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 45 of 74

of course be added at a later date, for pre-existing parameter file formats,
like CDF, etc.

source Optional attribute indicating the source of the parameters as a URI (cf.
RFC 3986). For purposes of the resolution of relative URIs the base URI
is the URI of the SSD, if the sourceBase attribute is not specified or is

specified as SSD, and the URI of the referenced component if the base

attribute is specified as component.

This allows the specification of parameter sources that reside inside the
component (for example an FMU) through relative URIs.

If the source attribute is missing, the parameter set MUST be provided

inline as contents of a ParameterValues element, which MUST NOT be

present otherwise.

sourceBase Defines the base the source URI is resolved against: If the attribute is

missing or is specified as SSD, the source is resolved against the URI of

the SSD, if the attribute is specified as component the URI is resolved

against the (resolved) URI of the component source.

prefix Defines the optional prefix for name resolution and mapping purposes for
this binding. If this attribute is empty or not supplied no prefix is used for
name resolution and mapping, otherwise the specified prefix is prepended
to all names in the parameter source prior to processing the normal name
resolution or name mapping rules. This allows the user to apply a
parameter set normally intended for a component (and thus containing
bare parameter names) at a system level targeted to one element of the
system by supplying the name of the element plus a dot as a prefix on the
binding, thus causing all parameter names in the parameter set to be
treated as if they were specified with proper hierarchical names.

The following XML child elements are specified for the ParameterBinding element:

ELEMENT DESCRIPTION

ParameterValues This optional element can be used to provide parameter values inline to the
parameter binding, in which case the source attribute of the

ParameterBinding element MUST be empty.

ParameterMapping This optional element provides an optional parameter mapping, which
specifies how the parameter names and values provided in the parameter
source are to be mapped to the parameters of the component or system in
question. If no mapping is supplied, the parameter names of the parameter
source are used as is for name matching against the names of parameters in
the component or system and the values of the parameter source are not
transformed further before being applied. See below for details.

5.2.3.1. ParameterValues

When this element is present, its contents MUST be an ssv:ParameterSet element as specified by the

SystemStructureParameterValues schema, if the type attribute of the enclosing

ParameterBinding element is application/x-ssp-parameter-set, or any other valid XML content

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 46 of 74

if the type attribute references another MIME type. In that case there SHOULD be a layered

specification that defines how embedding the content works for that MIME type.

5.2.3.2. ParameterMapping

This element provides a parameter mapping, which specifies how the parameter names and values
provided in the parameter source are to be mapped to the parameters of the component or system in
question. If no mapping is supplied, the parameter names of the parameter source are used as is for
name matching against the names of parameters in the component or system and the values of the
parameter source are not transformed further before being applied.

ATTRIBUTE DESCRIPTION

type Optional attribute giving the MIME type of the parameter mapping, which
defaults to application/x-ssp-parameter-mapping to indicate the

SSP parameter mapping file format. No further types are currently
defined, but can of course be added at a later date.

source Optional attribute indicating the source of the parameter mapping as a
URI (cf. RFC 3986). For purposes of the resolution of relative URIs the
base URI is the URI of the SSD, if the sourceBase attribute is not

specified or is specified as SSD, and the URI of the referenced component

if the base attribute is specified as component.

This allows the specification of parameter mapping sources that reside
inside the component (for example an FMU) through relative URIs.

If the source attribute is missing, the parameter mapping MUST be

provided inline as contents of the ParameterMapping element, which

MUST be empty otherwise.

sourceBase Defines the base the source URI is resolved against: If the attribute is

missing or is specified as SSD, the source is resolved against the URI of

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 47 of 74

the SSD, if the attribute is specified as component the URI is resolved

against the (resolved) URI of the component source.

The contents of the element MUST be empty if the source attribute is present. If the source attribute is

not present, the contents MUST be an ssm:ParameterMapping element, if the type attribute of this

element is application/x-ssp-parameter-mapping, or any other valid XML content if the type

attribute references another MIME type. In that case there SHOULD be a layered specification that
defines how embedding the content works for that MIME type.

5.3 System

This element describes a system, which can contain components, signal dictionary references and other
systems as elements, connectors as an interface to the outside world, and connections connecting the
connectors of itself and of its elements to one another.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 48 of 74

The following XML child elements are specified for the System element:

ELEMENT DESCRIPTION

Elements This optional element provides the elements contained in this system,
see specification below.

Connections This optional element provides the connections between connectors of
the system, connectors of its elements and inbetween those connectors.

SignalDictionaries This optional element provides the set of defined signal dictionaries for
the system.

SystemGeometry This optional element defines the extent of the system canvas for the
system.

GraphicalElements This optional element contains the set of purely graphical elements that
are contained in the system, like notes, which have no semantic impact
on the system but aid in presentation of the system in graphical user
interfaces.

5.3.1 Elements

This optional element contains one or more components, signal dictionary references or systems that
are the internal content of the given system.

The following XML child elements are specified for the Elements element:

ELEMENT DESCRIPTION

Component A component, see section 04.6.

SignalDictionaryReference A reference to a signal dictionary, see section 5.54.7.

System A nested system, see section 5.34.5.

5.3.2 Connections

This optional element provides the connections between connectors of the system, connectors of its
elements and inbetween those connectors.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 49 of 74

This element specifies a connection between two connectors, either of the system or its directly
contained elements. Note that only connections between certain kinds of connectors are allowed, as
specified in section 5.3.2.1. Note also that the terms start and end in the attribute names of the
connector, like startElement or endConnector, do not denote directionality of the data flow implied by

the connector. That is determined by the combination of the semantics of the actual connectors
(variables/ports) connected and their kind attributes.

ATTRIBUTE DESCRIPTION

startElement Optional attribute giving the the name of the element that contains the
connector given as startConnector. If the attribute is not present,

then the startConnector names a connector on this system.

startConnector Required attribute giving the name of the connector that is the start of
the connection. If startElement is not supplied this indicates a

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 50 of 74

connector on this system, otherwise the connector is to be found on the
given element.

endElement Optional attribute giving the name of the element that contains the
connector given as endConnector. If the attribute is not present, then

the endConnector names a connector on this system.

endConnector Required attribute giving the name of the connector that is the end of
the connection. If endElement is not supplied this indicates a connector

on this system, otherwise the connector is to be found on the given
element.

suppressUnitConversion Optional attribute specifying whether automatic conversions between
start and end connector are performed using unit information potentially
available for both start and end definitions. If this attribute is supplied
and its value is true, then the environment will not perform any
automatic unit conversions, otherwise automatic unit conversions can
be performed. This is also relevant in conjunction with the optional
linear transformation supplied via the LinearTransformation

element: With suppressUnitConversion = true, the linear

transformation is performed instead of any unit conversions, whereas
otherwise the linear transformation is performed in addition to any unit
conversions.

5.3.2.1. Allowed connections

The following table specifies all allowed connections, depending on the owner of the connectors
(connector of element or connector of the enclosing system) and the kind of the connectors being
connected. Note that source and destination in the following table indicate the resulting data flow and are
unrelated to the start and end designation of a connection, as described above.

Implementations MUST NOT specify connections that are not of one of the allowed combinations in the
following table. Implementations MUST ensure that data flow is specified unambiguously, including
ensuring that not multiple connections with inbound data flow enter into a connector signifying an input,

inout or parameter connector of an element, or a calculatedParameter or output connector of an

enclosing system.

SOURCE DESTINATION

OWNER KIND OWNER KIND

System parameter System calculatedParameter

System parameter System output

System input System output

System parameter Element parameter

System parameter Element input

System parameter Element inout

System input Element input

System input Element inout

Element calculatedParameter Element parameter

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 51 of 74

Element calculatedParameter Element input

Element calculatedParameter Element inout

Element output Element input

Element output Element inout

Element inout Element input

Element calculatedParameter System calculatedParameter

Element calcualtedParameter System output

Element output System output

Element inout System output

The following XML child elements are specified for the Connection element:

ELEMENT DESCRIPTION

LinearTransformation /
BooleanMappingTransformation /
IntegerMappingTransformation /
EnumerationMappingTransformation

Specifies an optional transformation for the connection. If
any, exactly one of these elements MUST be present to
specify the type of the transformation. See
4.5.2 Transformation Choice for details.

ConnectionGeometry This optional element defines the geometry information of
the connection.

5.3.2.2. ConnectionGeometry

This optional element defines the geometry information of the connection. The start and end coordinates of
the connection are derived automatically through the coordinates of the corresponding connectors. The only
relevant geometry information provided by the connection geometry is a, by default empty, list of intermediate
waypoint coordinates, which are to be interpreted as for the svg:polyline primitive, i.e. as waypoints for

straight line segments, with the first and last points added automatically based on the translated coordinates
of the start and end connectors. Note that x and y coordinates are in the coordinate system of the enclosing
system.

ATTRIBUTE DESCRIPTION

pointsX Required attribute giving a list of x coordinates of the intermediate
waypoints.

pointsY Required attribute giving a list of y coordinates of the intermediate
waypoints.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 52 of 74

[Graphical example for a ConnectionGeometry:

]

5.3.3 SignalDictionaries

Signal dictionaries can be seen as a description of a collection of signals. Such collections can also be seen
as a “signal bus” (like a CAN-bus in embedded systems). One can use a signal dictionary as a specification
of how a collection of signals shall look like with definition of signal names and their units during a design
phase. When a large number of signals have to be handled, signal dictionaries can help to keep a system
description clearly represented.

Another benefit of signal dictionaries is the possibility to define a mapping between two or more signal
dictionaries that may differ by names or units, which is a common case when components are integrated

into a system that come from different sources without a common design or architecture.

This optional element provides the set of defined signal dictionaries for the system.

SystemGeometry

Element
(x2,y2)

ConnectionGeometry

(x1,y1)
startConnector

endConnector

(0.0,0.0) x

y

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 53 of 74

A signal dictionary is a collection of signals which can be accessed in different systems at different levels
of the hierarchy through signal dictionary references referencing the signal dictionary.

ATTRIBUTE DESCRIPTION

name Required attribute giving the signal dictionary a name, which shall be
unique within the directly enclosing system. The name is used for purposes
of specifying the signal dictionary referenced by a signal dictionary
reference. Name lookups occur in hierarchical fashion, i.e. the name is first
looked up in the system that contains a signal dictionary reference. If that
lookup yields no match, the lookup is performed on the enclosing system,
etc., until a match is found. It is an error if no matching signal dictionary is
found.

type Optional attribute giving the MIME type of the signal dictionary, which
defaults to application/x-ssp-signal-dictionary to indicate the

SSP signal dictionary file format. No further types are currently defined, but
can of course be added at a later date.

source This attribute indicates the source of the signal dictionary as a URI (cf.
RFC 3986). For purposes of the resolution of relative URIs the base URI is
the URI of the SSD.

If the source attribute is missing, the signal dictionary MUST be provided

inline as contents of the SignalDictionary element, which MUST be empty
otherwise. For the default type application/x-ssp-signal-

dictionary such inline content MUST be a SignalDictionary from the

SystemStructureSignalDictionary namespace. See section 8 for

details.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 54 of 74

5.3.4 SystemGeometry

This element defines the extent of the system canvas. (x1,y1) and (x2,y2) define the lower-left and

upper-right corner, respectively. Different from ElementGeometry, where x1 > x2 and y1 > y2 indicate

flipping, x1 < x2 and y1 < y2 MUST hold here.

If undefined, the system canvas extent defaults to the bounding box of all ElementGeometry elements of
the child elements of the system.

When displaying the content of a sub-system together with the enclosing parent system, the
transformation of co-coordinates inside the sub-system to co-ordinates in the parent system is defined by
the transformation from SystemGeometry.{x1,y1,x2,y2} to ElementGeometry.{x1',y1',x2',y2'},

where ElementGeometry.z' is the respective coordinate of the sub-system when instantiated in the

parent system after rotation.

When importing or exporting systems, the nominal unit of the coordinates is 1 mm for all axis. The
nominal unit is intended to ensure similar visual sizing and appearances when combining systems from
different implementations.

[The visual appearance of a length of 1 should be (roughly) 1 mm. Importing and exporting tools that
support a graphical representation might use different coordinate systems. This common unit for
coordinates is defined to allow a seamless integration of SSPs from different sources. Without such a
common unit, an SSP exported in one tool might appear huge or tiny in the other tool. Hence, the
exporting tool has to scale from its own coordinate system when exporting and the importing tool has to
scale to its own coordinate system when importing an SSP.]

ATTRIBUTE DESCRIPTION

x1 Required attribute giving the x coordinate of the lower-left corner of the
system canvas.

y1 Required attribute giving the y coordinate of the lower-left corner of the
system canvas.

x2 Required attribute giving the x coordinate of the upper-right corner of the
system canvas.

y2 Required attribute giving the y coordinate of the upper-right corner of the
system canvas.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 55 of 74

[Graphical example for a SystemGeometry:

]

System

Element 1

SystemGeometry

(x1,y1)

(x2,y2)

(0.0, 0.0) x

y

Element 2

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 56 of 74

[Graphical example showing the interplay of SystemGeometry, ElementGeometry, ConnectorGeometry, and
ConnectionGeometry:

]

System

Element

Element

(‐13.0,‐635.25)

(963.0,102.0)

(187.0,‐435.2)

(468.0,‐276.0)

(613.0,‐198.0)

(763.0,‐98.0)

(1.0,0.5)

(0.18,0.31)

(520.0,‐359.0)

(520.0,‐167.0)

SystemGeometry
ElementGeometry
ConnectorGeometry
ConnectionGeometry

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 57 of 74

[Example how the given Geometries can be used to transform coordinates to show elements on different
hierarchy levels in a single graphic:

Subsystem A is an element with an ElementGeometry (x1_Ae, y1_Ae, x2_Ae, y2_Ae) and a
SystemGeometry (x1_As, y1_As, x2_As, y2_As).
B is an element in subystem A with an ElementGeometry coordinates (x1_Be, y1_Be, x2_Be, y2_Be).

To plot the element B in the system where A is located, use the following coordinate transformation:

x1_Be -> (x1_Ae + (x1_Be - x1_As) * (x2_Ae - x1_Ae) / (x2_As - x1_As))
y1_Be -> (y1_Ae + (y1_Be - y1_As) * (y2_Ae - y1_Ae) / (y2_As - y1_As))

x2_Be -> (x1_Ae + (x2_Be - x1_As) * (x2_Ae - x1_Ae) / (x2_As - x1_As))
y2_Be -> (y1_Ae + (y2_Be - y1_As) * (y2_Ae - y1_Ae) / (y2_As - y1_As))
]

x

y

(x1_As,y1_As) (x2_As,y1_As)

(x1_As, y2_As)

(x1_Ae,y1_Ae)

(x1_Be,y1_Be)

(0,0)

(x2_Be,y2_Be)

(x2_Ae,y2_Ae)

(x2_As,y2_As)

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 58 of 74

5.3.5 GraphicalElements

This optional element contains the set of purely graphical elements that are contained in the system, like
notes, which have no semantic impact on the system but aid in presentation of the system in graphical
user interfaces.

Currently the only graphical element defined is the Note element, which allows for simple textual notes

to be placed into the system diagram, but in the future more elements might be added as needed for
exchange of graphical information.
5.3.5.1. Note

This element defines a graphical note to be placed on the canvas of the enclosing system. It is sized using
the attributes so that the coordinates (x1,y1) and (x2,y2) define the positions of the lower-left and upper-right

corners of the note in the coordinate system of the parent.
The note text is given by the text attribute. The presentation expectation is that the text is automatically sized
and wrapped in such a way that it fits the note area. If this would lead to too small text, it might be necessary
to provide an interactive method (like expanding triangle, or popup, or other means) to show the remainder of
the note text. Inside the text attribute, newlines indicate paragraph breaks.

ATTRIBUTE DESCRIPTION

x1 Required attribute giving the x coordinate of the lower-left corner of the
note.

y1 Required attribute giving the y coordinate of the lower-left corner of the
note.

x2 Required attribute giving the x coordinate of the upper-right corner of the
note.

y2 Required attribute giving the y coordinate of the upper-right corner of the
note.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 59 of 74

5.4 Component

A component is an atomic element of a system (i.e. its internal structure is not specified).

ATTRIBUTE DESCRIPTION

type Optional attribute giving the MIME type of the component, which defaults
to application/x-fmu-sharedlibrary to indicate the type of the

component. Valid further types are application/x-ssp-definition

for system structure description files, and application/x-ssp-package

for system structure package files. No further types are currently defined.

source This attribute indicates the source of the component as an URI (cf. RFC
3986). For purposes of the resolution of relative URIs the base URI is the
URI of the SSD. Therefore for components that are located alongside the
SSD, relative URIs without scheme and authority CAN and SHOULD be
used to specify the component sources. For components that are
packaged inside an SSP that contains this SSD, this is REQUIRED (in

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 60 of 74

this way, the SSD URIs remain valid after unpacking the SSP into the
filesystem).

[For example for an FMU called MyDemoFMU.fmu, that is located in the

resources directory of an SSP, the correct URI would be

resources/MyDemoFMU.fmu.]

When referencing another SSP, by default the default SSD of the SSP
(i.e. SystemStructure.ssd) is referenced. When a non-default SSD

should be selected, then the name of the non-default SSD MUST be
given through a fragment identifier, i.e. the URI
resources/SubSSP.ssp#VariantB.ssd would reference the

VariantB.ssd of SubSSP.ssp located in the resources directory

relative to this SSD.

When the URI is a same-document URI with a fragment identifier, for
example #other-system, then the fragment identifier MUST identify a

system element in this SSD document with an id attribute identical to the

fragment identifier. This mechanism can be used to instantiate an
embedded system definition multiple times through reference to its
definition element.

Note that implementations are only REQUIRED to support relative URIs
as specified above, and that especially relative URIs that move beyond
the baseURI (i.e. go "up" a level via ..) are NOT REQUIRED to be

supported by implementations, and are in fact often not supported for
security or other reasons. Implementations are also NOT REQUIRED to
support any absolute URIs and any specific URI schemes (but are of
course allowed to support any and all kinds of URIs where this is
considered useful).

[Since the release of SSP 1.0, the need to support the exchange of
system structure descriptions containing components with no specified
implementation has been identified, to exchange system designs as
templates, for example. Future releases of SSP will therefore likely make
the source attribute optional, to support such use cases. Current practice
for 1.x has been to either already treat this attribute as optional or to use
the empty string value to indicate a missing implementation. Tools
wanting to support these use cases should therefore be prepared to
accept SSD files with missing or empty source attributes on components,
and treat them like empty systems for the purposes of semantics.]

implementation When the referenced component is an FMU that contains multiple
implementations [for example Co-Simulation and Model Exchange], this
optional attribute can be used to determine which FMU implementation
should be employed. If the attribute is missing or uses the default value
any, the importing tool is free to choose what kind of FMU implementation

to use. If the value is CoSimulation or ModelExchange the

corresponding FMU implementation MUST be used. It is an error if the
specified type of FMU implementation is not present in the FMU.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 61 of 74

5.5 SignalDictionaryReference

A signal dictionary reference is an element of a system that references a signal dictionary, i.e. it is the
place-holder of the signal dictionary that allows access to the contents of the signal dictionary through its
connectors, which MUST reference signal dictionary entries.

ATTRIBUTE DESCRIPTION

dictionary This required attribute gives the name of the signal dictionary that is to be
referenced. Name lookups occur in hierarchical fashion, i.e. the name is
first looked up in the system that contains a signal dictionary reference. If
that lookup yields no match, the lookup is performed on the enclosing
system, etc., until a match is found.

It is an error if no matching signal dictionary is found.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 62 of 74

6. System Structure Parameter Values (SSV)

A System Structure Parameter Values (abbreviated SSV) element provides parameter sets for a
component or system. The XML element can be inlined with its parent element or referenced from the
parent element and supplied as a separate file that is either included within an SSP package or specified
as an external URL.

For information on hierarchical naming structure and precedence rules, see section 5.2.3.

An SSV file MUST be a well-formed XML 1.0 [XML10] file that conforms to the
SystemStructureParameterValues XML Schema that is distributed as part of this standard. The file
MUST use the UTF-8 encoding. All SSV-specific elements live in the http://ssp-

standard.org/SSP1/SystemStructureParameterValueshttp://ssp-

standard.org/SSP1/SystemStructureParameterValues namespace, nicknamed ssv.

It is RECOMMENDED that the file extension .ssv be used for stand-alone SSV files. Except for this file

extension recommendation the filename is arbitrary and is independent of variant handling or the names
of SSD files.

6.1 ParameterSet

The ParameterSet element contains parameter and meta data information. If the SSV is provided as a

separate file, the root element MUST be a ParameterSet element.

ATTRIBUTE DESCRIPTION

version This required attribute specifies the version of this specification that the
parameter set conforms to. Only major and minor version number are included,

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 63 of 74

the patch version number MUST NOT be included in this attribute. For the
current release candidate this MUST be 1.0-RC1.

name This required attribute provides a name which can be used for purposes of
presenting the parameter set to the user.

The following child elements are specified for the ParameterSet element:

ELEMENT DESCRIPTION

Parameters This required element specifies the parameters in the parameter set. See
below for details.

Enumerations This optional element MUST contain definitions for all enumerations referenced
in the parameter set. See section 4.4.1 for its definition.

Units This optional element MUST contain definitions for all units referenced in the
parameter set. See section 4.4.2 for its definition.

6.2 Parameters

The Parameters element contains a list of individual parameters. If the list is empty, the parameter set

SHALL not have any effect on any system or component it is applied to.

It is NOT REQUIRED that all parameters included in the Parameters element correspond to parameters

available in the components or systems the parameter set is applied to (through ParameterBinding

elements in the system structure description). This allows the definition of large parameter data sets out
of which only a subset is applied in a given case. See section 5.2.3 for the semantic defintion of
parameter bindings.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 64 of 74

The following XML attributes are specified for the Parameter element:

ATTRIBUTE DESCRIPTION

name This required attribute specifies the name of the parameter in the parameter
set. The name MUST be unique within the parameter set.

The following XML child elements are specified for the Parameter element:

ELEMENT DESCRIPTION

Real / Integer /
Boolean / String /
Enumeration / Binary

Exactly one of these elements MUST be present to specify the type of
the parameter. See below for details on each type.

6.2.1 Real

This type specifies a parameter that represents an IEEE754 double precision floating point number.

ATTRIBUTE DESCRIPTION

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 65 of 74

value This required attribute specifies the value of the parameter.

unit This optional attribute gives the name of the unit of the parameter. The name
MUST match the name of a unit defined in the Units element in the

ParameterSet root element.

6.2.2 Integer

This type specifies a parameter that represents a 32-bit signed integer.

ATTRIBUTE DESCRIPTION

value This required attribute specifies the value of the parameter.

6.2.3 Boolean

This type specifies a parameter that represents a Boolean value.

ATTRIBUTE DESCRIPTION

value This required attribute specifies the value of the parameter.

6.2.4 String

This type specifies a parameter that represents a zero-terminated UTF-8 encoded string.

ATTRIBUTE DESCRIPTION

value This required attribute specifies the value of the parameter.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 66 of 74

6.2.5 Enumeration

This type specifies a parameter that represents an enumeration value, as specified by an enumeration
definition.

ATTRIBUTE DESCRIPTION

value This required attribute specifies the value of the parameter as the enumeration
item name. Note that the actual numeric value this value is mapped to at run
time will depend on the item mapping of the enumeration type of the variables
being parameterized.

name This optional attribute specifies the name of the enumeration type that the
parameter references. If it is supplied, the name MUST match the name of an
enumeration type defined in the Enumerations element in the ParameterSet

root element.

This attribute is optional; if it is not specified, then the list of valid enumeration
items with their names and values is not specified, and the interpretation of the
enumeration value is left solely to the variables that are being parameterized.

If the attribute is specified, implementations MAY use that information for user
interface purposes, and/or for additional consistency checking.

[Note: the level of consistency checking is left optional by design, since
mandating consistency checking across files requires unified types across files
coming potentially from different sources, which is not always realistically
possible.]

6.2.6 Binary

This type specifies a parameter that represents a length-terminated binary data type.

ATTRIBUTE DESCRIPTION

value This attribute gives the value of the parameter as a hex-encoded binary value.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 67 of 74

mime-type This optional attribute specifies the MIME type of the underlying binary data,
which defaults to the non-specific application/octet-stream type. This

information can be used by the implementation to detect mismatches between
binary parameters, or to provide automatic conversions between different
formats. It should be noted that the implementation is NOT REQUIRED to
provide this service, i.e. it remains the responsibility of the operator to ensure
only compatible binary connectors/parameters are connected.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 68 of 74

7. System Structure Parameter Mapping (SSM)

A parameter mapping describes a mapping between the parameters in a parameter source and the
actual parameters of a system or component to which the parameters are to be applied. The mapping
maps the names of parameters in the source to the names of the parameters in the system or
component that are to be parametrized. It can also optionally provide for transformations that are to be
applied on the value of the parameters prior to them being applied.

A parameter mapping can be provided either as a stand-alone XML file (an SSM file), which can be
referenced from SSD files, or it can be embedded in an ssd:ParameterMapping element of the SSD

directly (see section 5.2.3.2).

An SSM file MUST be a well-formed XML 1.0 [XML10] file that conforms to the
SystemStructureParameterMapping XML Schema that is distributed as part of this standard. The file
MUST use the UTF-8 encoding. All SSM-specific elements live in the http://ssp-

standard.org/SSP1/SystemStructureParameterMappinghttp://ssp-

standard.org/SSP1/SystemStructureParameterMapping namespace, nicknamed ssm.

It is RECOMMENDED that the file extension .ssm be used for stand-alone SSM files. Except form this

file extension recommendation the filename is arbitrary and is independent of variant handling or the
names of SSD files.

The root element of an SSM file MUST be a ParameterMapping element, which contains an arbitrary

number of MappingEntry elements.

7.1 ParameterMapping

This element describes a parameter mapping, which consists of multiple mapping entries, each
describing one parameter mapping (see next section). The parameter mapping MUST contain entries for
all parameters that are going to be mapped. All parameters of the parameter source which are not
referenced in a mapping entry will not be applied. All parameters that are referenced in a mapping entry
will only be applied using the name they are mapped to, i.e. any original name is disregarded for
applying parameters. Implementations MUST NOT map multiple parameters to the same name.
Implementations CAN map the same parameter to multiple names.

ATTRIBUTE DESCRIPTION

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 69 of 74

version This required attribute specifies the version of this specification that the
parameter mapping conforms to. Only major and minor version number are
included, the patch version number MUST NOT be included in this attribute.
For the current release candidate this MUST be 1.0-RC1.

7.1.1 MappingEntry

This element specifies a single mapping between a parameter in the source and a parameter of the
system or component being parametrized. Through its optional GTransformationChoice element a
transformation can be specified that is to be applied to the parameter value prior to its application to its
target parameter.

ATTRIBUTE DESCRIPTION

source This required attribute specifies the name of the parameter in the
parameter source that is to be mapped to a new name and/or provided
with a transformation in this mapping entry.

target This required attribute specifies the name of the parameter in the
system or component that is to be parametrized, i.e. that is the target of
this mapping entry.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 70 of 74

suppressUnitConversion This optional attribute specifies whether automatic conversions between
parameter source and its target are performed using unit information
potentially available for both value and target definitions. If this attribute
is supplied and its value is true, then the environment will not perform
any automatic unit conversions, otherwise automatic unit conversions
can be performed. This is also important in conjunction with the optional
linear transformation supplied via the LinearTransformation

element: With suppressUnitConversion = true, the linear

transformation is performed instead of any unit conversions, whereas
otherwise the linear transformation is performed in addition to any unit
conversions. In that case the specified transformation will be done after
any unit conversions have been performed on the value.

The following XML child elements are specified for the MappingEntry element:

ELEMENT DESCRIPTION

LinearTransformation /
BooleanMappingTransformation /
IntegerMappingTransformation /
EnumerationMappingTransformation

Specifies an optional transformation for the mapping. If
any, exactly one of these elements MUST be present to
specify the type of the transformation. See
4.5.2 Transformation Choice for details.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 71 of 74

8. System Structure Signal Dictionaries (SSB)

A signal dictionary is a collection of signals defined through its DictionaryEntry elements.

A signal dictionary can be provided either as a stand-alone XML file (an SSB file), which can be
referenced from SSD files, or it can be embedded in an ssd:ParameterMapping SignalDictionary

element of the SSD directly (see section 5.3.35.2.3.2).

An SSB file MUST be a well-formed XML 1.0 [XML10] file that conforms to the
SystemStructureSignalDictionary XML Schema that is distributed as part of this standard. The file MUST
use the UTF-8 encoding. All SSB-specific elements live in the http://ssp-

standard.org/SSP1/SystemStructureSignalDictionaryhttp://ssp-

standard.org/SSP1/SystemStructureSignalDictionary namespace, nicknamed ssb.

It is RECOMMENDED that the file extension .ssb be used for stand-alone SSB files. Except for this file

extension recommendation the filename is arbitrary and is independent of variant handling or the names
of SSD files.

The root element of an SSB file MUST be a SignalDictionary element, which contains an arbitrary

number of DictionaryEntry elements. Any enumerations or units used in the DictionaryEntry

elements MUST be declared within the Enumerations and Units child elements of the

SignalDictionary.

8.1 SignalDictionary

This element describes a signal dictionary, which consists of one or more dictionary entries, each
describing one signal in the signal dictionary (see next section).

ATTRIBUTE DESCRIPTION

version This required attribute specifies the version of this specification that the
parameter mapping conforms to. Only major and minor version number are

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 72 of 74

included, the patch version number MUST NOT be included in this attribute.
For the current release candidate this MUST be 1.0-RC1.

The following XML child elements are specified for the SignalDictionary element:

ELEMENT DESCRIPTION

DictionaryEntry One or more entries of the signal dictionary.

Enumerations This optional element MUST contain definitions for all
enumerations referenced in the signal dictionary.

Units This optional element MUST contain definitions for all units
referenced in the signal dictionary.

8.1.1 DictionaryEntry

A dictionary entry defines a single signal in the signal dictionary.

ATTRIBUTE DESCRIPTION

name Required attribute giving the signal dictionary entry a name, which shall
be unique within the signal dictionary.

The following XML child elements are specified for the DictionaryEntry element:

ELEMENT DESCRIPTION

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 73 of 74

Real / Integer /
Boolean / String /
Enumeration / Binary

Exactly one of these elements MUST be present to specify the type
of the signal dictionary entry. See section 4.5.1 for details.

 System Structure and Parameterization 1.0.1
 March July 525, 20192022

 Page 74 of 74

9. Literature

[RFC2119] IETF: RFC 2119 - Key words for use in RFCs to Indicate Requirement Levels. IETF Best
Current Practice BCP 14. 1997. https://www.ietf.org/rfc/rfc2119.txt

[ZIP635] PKWARE Inc.: APPNOTE.TXT - .ZIP File Format Specification, Version 6.3.5. 2018.
https://pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.3.5.TXT

[SV200] Preston-Werner, T.: Semantic Versioning 2.0.0. 2013.
https://semver.org/spec/v2.0.0.html

[XML10] World Wide Web Consortium: Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C
Recommendation. 2008. http://www.w3.org/TR/2008/REC-xml-20081126/

[FMI20] Modelica Association: Functional Mock-up Interface for Model Exchange and Co-
Simulation, Version 2.0.3. 20214. https://github.com/modelica/fmi-
standard/releases/download/v2.0.3/FMI-Specification-2.0.3.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_
CoSimulation_v2.0.pdf

[OSMP100OSMP120] Mai, P.R.ASAM e.V.: OSI Sensor Model Packaging Version 1.02.0. 20182021.
https://github.com/OpenSimulationInterface/osi-sensor-model-packaging/releases/tag/v1.2.0
https://github.com/OpenSimulationInterface/osi-sensor-model-packaging/releases/tag/v1.0.0

