MA-Project “System Structure and Parameterization” – Early Insights

presented by Jochen Köhler (ZF)

Japanese Modelica Conference 2016-05-23/24
Tokyo / Japan
Motivation for initiating MAP “System Structure and Parameterization” (SSP) – Using FMI as Basis

• FMI is basically a great technology to make exchanging models inside and among companies much easier

• Typical use-case is a network of FMUs (System structure) ...

• ... Therefore, some features are missing ...
Motivation for initiating SSP – Missing features

• Collected on a meeting with BMW, Bosch, ZF, PMSF (2014):
 – No possibility to separate parameter data from the FMUs
 – No possibility to change parameters in a consistent way independently from the integration environment for single FMUs.
 – No possibility to handle intellectual property of parameters
 – No possibility of mapping parameters in a network of FMUs
 – No possibility to store a network of FMUs tool independently
Main Purposes of SSP

• Define a standardized format for the connection structure of a network of components.
• Define a standardized way to store and apply parameters to these components.
• The developed standard / APIs should be usable in all stages of development process (architecture definition, integration, simulation, test in MiL, SiL, HiL).
• The work in this project shall be coordinated with other standards and organizations (FMI, ASAM, OMG).
Overview of XML Schema Definitions

System Structure Definition

Parameter Binding
- source : URI
- type : string

Parameter Mapping
- source : URI
- type : string

Element
- name : string

Connector
- name : string
- kind : enum

System

Signal Dictionary

Signal Dictionary Reference

Component
- source : URI
- type : string

Connection
- suppressUnitConversion : boolean

Elements

Connectors

Parameter Mappings

Parameter Bindings

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

XML C-Code

Libs

Map1

Map2

Trans

*.SSV

*.SSM

*.FMU

*.SSP

SSD

FMU

SSP

SSD

Use case
• Exchange of Complete Systems with Variants

Features
• All information (FMUs, system structure definition, parameters) can be stored in one archive (zip-file)
• Multiple SSDs in one SSP allows for variant modeling
Use case
• Defining a Network of FMUs

Features
• Hierarchical sub-systems
• Empty components/FMUs as interface templates
• External resources via URIs: Both relative to SSD/SSP or absolute, e.g. via HTTP(S).
• Connections with unit conversions and optional linear/map transformations
• Optional: Diagram geometry
XML Schema Description - System Structure Definition

MA-Project “System Structure and Parameterization” – Early Insights
- Japanese Modelica Conference 2016-05-23/24
XML Schema Description - System Structure Definition

```xml
<ssd:Elements>
  <ssd:System name="SubSystem">
    <ssd:Connectors>
      <ssd:Connector name="LocalIn1" kind="input"><ssd:Real unit="m/s"/></ssd:Connector>
      <ssd:Connector name="Out1" kind="output"><ssd:Real unit="m/s"/></ssd:Connector>
      <ssd:Connector name="Out3" kind="output"><ssd:Real unit="m/s"/></ssd:Connector>
    </ssd:Connectors>
    <ssd:Elements>
      <ssd:SignalDictionaryReference dictionary="MyDictionary" name="MyDict">
        <ssd:Connectors>
          <ssd:Connector name="Var2" kind="input"><ssd:Real unit="m/s"/></ssd:Connector>
          <ssd:Connector name="Var4" kind="input"><ssd:Real unit="m/s"/></ssd:Connector>
        </ssd:Connectors>
        <ssd:Component name="FirstFMUInstance1" source="resources/FirstFMU.fmu" type="application/x-fmu-sharedlibrary">
          <ssd:Connectors>
            <ssd:Connector name="In1" kind="input"><ssd:Real unit="m/s"/></ssd:Connector>
            <ssd:Connector name="Out1" kind="output"><ssd:Real unit="m/s"/></ssd:Connector>
            <ssd:Connector name="Out2" kind="output"><ssd:Real unit="m/s"/></ssd:Connector>
          </ssd:Connectors>
          <ssd:ParameterBindings>
            <ssd:ParameterBinding source="resources/SampleSystemParameterValuesFirstFMU.csv" type="application/x-ssp-parameter-set"/>
            <ssd:ParameterMapping source="resources/SampleSystemParameterMappingFirstFMU.xm" type="application/x-ssp-parameter-mapping"/>
          </ssd:ParameterBindings>
        </ssd:Component>
        <ssd:Component name="FirstFMUInstance2" source="resources/FirstFMU.fmu" type="application/x-fmu-sharedlibrary"> (6 lines)
        </ssd:Component>
      </ssd:Elements>
    </ssd:Elements>
  </ssd:Connectors>
</ssd:Elements>
```
Use cases
- Collecting Control Signals in a Central Location

Features
- Causality is checked by tool automatically
- Crosses hierarchies without need for downward passing
- Well-suited for e.g. ECU control busses
Use case

- Tool-independent Exchange of Parameter Data

Features

- Neutral exchange format between parameter sources
- Compatible to FMI standard
- Provides some meta data
- Access to param DBs via HTTP (-> Parameter API)

XML Schema Description – Parameter Values Data

SSV

ParameterSet

- name string

Unit

- name string

BaseUnit

- baseUnit string
 - kg int
 - m int
 - s int
 - A int
 - K int
 - mol int
 - cd int
 - rad int

Type

- real
- integer
- enumeration
- boolean
- string

Parameter

- name string

Annotation

- type string
 - body string

Annotation

- type string
 - body string

unit

Parameters

0..* Units

Annotations

0..* Parameters

Annotations

0..* Annotations
XML Schema Description - Parameter Mapping

Use case
- Mapping Parameters to FMUs when the Parameter Names differ or Parameter Values require Transformations

Features
- Can be stored separately from System Structure and Parameter Data
- Can be inlined into SSD
- Optional manual linear and mapping transformations
Parameter API Get Mechanisms

• General Idea:
 – Access to external parameter sources via HTTP(S) GET Requests
 – Request URI is the source attribute
 – Type attribute passed via accept request header
 – Updates handled efficiently via ETag/Conditional GET/HEAD

• Returns Parameter Data in the format requested:
 – application/x-ssp-parameter-set -> SSV file format
 – Sources and tools can support other formats
Parameter API Get Mechanisms

GET /context/ParamSetA HTTP/1.1
Host: pardb.example.com:80
Accept: application/x-ssp-parameter-set

HTTP/1.1 200 Ok
Content-Type: application/x-ssp-parameter-set
Content-Length: ...
ETag: "3f80f-1b6-3e1cb03b"

<?xml version="1.0" encoding="UTF-8"?>
<ssv:ParameterSet version="Draft20151124"
name="SystemParams" …>
 <ssv:Parameters>
 …
 </ssv:Parameters>
</ssv:ParameterSet>

• Future extension:
 – Request version/ variant Descriptor for Resources
 – Query for alternative versions/ variants based on descriptor with wild-cards
 – Full parameter management API for editing, managing parameters and parameter Sets
Integration of FMUs for HIL Testing

- HIL configuration tools are importing FMUs to integrate them with other FMUs, Simulink-based models and real ECUs
- Data Management tools are managing the lifecycle of the FMUs
Reuse of the System Structure for SIL, MIL and HIL

- Integration and Data Management tools share a vendor independent system description (SSP)
- Reuse of tools, configurations, models, tests, layouts and parameters at system level is supported
Prototypes – Integration Tool

- Model.CONNECT™ by AVL – Scope:
 - Simulation architecture set-up
 - Model integration (FMI and dedicated interfaces)
 - Execution (office and lab)
 - Model management
 - Handling system structure and parameter variants
Prototypes – Integration Tool

- Model.CONNECT™ by AVL – SSP prototype:
 - Import and export of system structure (SSP packages)
 - Prototype supports multiple structure variants in the package
 - Mapping between the SSP variant handling and the tool-specific variant handling had to be implemented
 - Import-export roundtrip does not re-produce original ssp content
 - Import and export of graphical information
 - Overall layout information can be transferred via SSP. Intention is not to have pixel-by-pixel reproduction in any tool
Prototypes – Online Testing Tool

• Scalability of <ssd:Connectors>
 – Ring configuration at a glance
 – 3D Flash UI for <ssd:Component>

• Time integration control master
 – Unit Test with default parameter
 – Synchronized Co-Simulation Test

• Parameter database as FMU
 – FMU of (sqlite.DB + sql.DLL)
 – exported by Optimus®
Prototypes – “Co-Simulation Browser” concept

- Mobile co-Simulation environment
- SSP(.zip) as online content
- Minimal GUI
Prototypes: Integration Tool FMI Bench

• FMI Bench by PMSF: Workbench for FMUs
 – FMU Inspector & Editor
 – FMU Profiling and Debugging
 – FMU Integration
 – Automated Workflows
 – Export FMU Networks as Integrated FMUs or Stand-alone Simulators
 – Supports Remote FMU Execution, FMU-internal Parallelization
Prototypes: Integration Tool FMI Bench

• FMI Bench SSP Prototype
 – Direct Editing of SSDs, SSPs, incl. Variants
 – Generation of Native FMI Bench Projects from SSP Projects
 – Generation of FMU or Stand-alone Sim. from SSP
 – Parallelization
Future work / Outline

• Further Development of API for parameter handling
• Try to involve providers of simulation data management systems in this project
• Evaluate approaches with „real-world examples“
• Publish first release soon

• Any contribution is very appreciated!